9.2 Renacimiento europeo


Hay un fuerte desarrollo en el área de las matemáticas en el siglo XIV, como la dinámica del movimiento. Thomas Bradwardine propone que la velocidad se incrementa en proporción aritmética como la razón de la fuerza a la resistencia se incrementa en proporción geométrica, y muestra sus resultados con una serie de ejemplos específicos, pues el logaritmo aún no había sido concebido; su análisis es un ejemplo de cómo se transfirió la técnica matemática utilizada por al-Kindi y Arnau de Vilanova.
Los matemáticos de esta época (tales como los calculatores de Merton College, de Oxford), al no poseer los conceptos del cálculo diferencial o de límite matemático, desarrollan ideas alternativas como por ejemplo: medir la velocidad instantánea como la "trayectoria que habría seguido [un cuerpo] si... hubiese sido movido uniformemente con un mismo grado de velocidad con el que es movido en ese instante dado";  bien: determinar la distancia cubierta por un cuerpo bajo movimiento uniforme acelerado (hoy en día resuelto con métodos de integración). Este grupo, compuesto por Thomas Bradwardine, William Heytesbury, Richard Swineshead y John Dumbleton, tiene como principal éxito la elaboración del teorema de la velocidad media que más tarde, usando un lenguaje cinemático y simplificado, compondría la base de la "ley de la caída de los cuerpos", de Galileo.


Nicolás Oresme en la Universidad de París y el italiano Giovanni di Casali, proveyeron -independientemente- una demostración gráfica de esta relación. En un comentario posterior a los Elementos, Oresme realiza un análisis más detallado en el cual prueba que todo cuerpo adquiere, por cada incremento sucesivo de tiempo, un incremento de una cualidad que crece como los números impares. Utilizando el resultado de Euclides que la suma de los números impares son los cuadrados, deduce que la cualidad total adquirida por el cuerpo, se incrementará conforme el cuadrado del tiempo.
Luca Pacioli escribe "Summa de Arithmetica, Geometría, Proportioni et Proportionalità" (Venecia, 1494), en donde se incluyen tratados de contabilidad y escritura; si bien estaba dirigido a mercaderes o aprendices de mercaderes, también contenía acertijos y rompecabezas matemáticos.  En Summa Arithmetica, Pacioli introduce símbolos por primera vez en un libro impreso, lo que luego se convirtió en una notación convencional. También es el primer libro conocido de álgebra (mucho del contenido es plagiado de Piero della Francesca).
Durante la primera mitad del siglo XVI, Scipione del Ferro y Niccolò Fontana Tartaglia descubren las soluciones complejas de las ecuaciones cúbicas, trabajando en la resolución de ecuaciones. Retomado por Tartaglia y publicado por Cardan, encuentran una primera formulación junto con Bombelli. Gerolamo Cardano publicará el Ars magna junto con un trabajo de su alumno Ferrari, quien resuelve las ecuaciones de cuarto grado. En 1572 Rafael Bombelli publica su L'Algebra, en el que muestra cómo utilizar las cantidades imaginarias que podrían aparecer en la fórmula de Cardano para las ecuaciones de grado tres.
Hasta fines del siglo XVI, la resolución de problemas matemáticos continúa siendo una cuestión retórica. El cálculo simbólico aparecerá en 1591, con la publicación del Isagoge Artem Analycitem de François Viète y la introducción de notaciones específicas para las constantes y las variables (trabajo popularizado y mejorado por Harriot, Fermat y Descartes, cambiará por completo el trabajo algebraico desarrollado en Europa). La principal aportación del Renacimiento a la matemática fue la sustitución del álgebra tensorial, heredado de la Antigua Grecia, por la más sencilla álgebra de los polinomios. En este periodo el álgebra, que desde los Elementos de Euclides se había estudiado desde un punto de vista geométrico, se independiza de la geometría y se convierte en una rama autónoma dentro de la matemática.

No hay comentarios.:

Publicar un comentario